检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《应用科学学报》2012年第4期349-355,共7页Journal of Applied Sciences
基 金:国家自然科学基金(No.60872142)资助
摘 要:针对目标检索问题,常用方案是视觉词典法(bag of visual words,BoVW),但传统的BoVW方法具有时间效率低、内存消耗大以及视觉单词同义性和歧义性的问题.针对这些问题,该文提出一种基于精确欧氏位置敏感哈希(exact Euclidean locality sensitive Hashing,E2LSH)的目标检索方法.首先,采用E2LSH对训练图像库的局部特征点进行聚类,生成1组支持动态扩充的随机化视觉词典组;然后,基于这组词典构建视觉词汇直方图和索引文件,并由tf-idf算法对词频向量重新分配权重;最后,将目标直方图特征与索引文件进行相似性匹配,完成目标检索.实验结果表明,相比于传统方法,该方法较大地提高了检索精度,对大规模数据库有较好的适用性.The problem of object retrieval is often addressed with the BoVW (bag of visual words) method. There are several problems in the traditional BoVW such as low time efficiency and large memory consumption, and synonymy and polysemy of visual words. In this paper, an object retrieval method based on exact Euclidean locality sensitive hashing (E2LSH) is proposed. E2LSH is used to hash local features of the training dataset, and a group of scalable random visual vocabularies is constructed. Then, the visual vocabulary histograms and index files are created according to these random vocabularies. The term frequency vectors are weighted with tf-idf strategy. Similarity matching between histogram of the query object and index files is made to accomplish object retrieval. Experimental results show that accuracy of the proposed method is substantially imoroved compared to the traditional methods. The method is aoolicable to large scale datasets.
关 键 词:目标检索 视觉词典法 精确欧氏位置敏感哈希 tf-idf算法
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222