基于CUDA的红外图像快速增强算法研究  被引量:2

Research of fast infrared image enhanced algorithm based on CUDA

在线阅读下载全文

作  者:张绍良[1] 闫钧华[1] 刘成[1] 朱智超[1] 

机构地区:[1]南京航空航天大学航天学院,江苏南京210016

出  处:《电子设计工程》2012年第17期153-157,共5页Electronic Design Engineering

基  金:南京航空航天大学大学生创新训练计划项目;南京航空航天大学基本科研业务费专项科研基金项目(NS2010214)

摘  要:针对红外图像边缘模糊,对比度低的问题,文中研究了改进的中值滤波和改进的Sobel边缘检测对红外图像进行处理。在对处理后图像的特征进行分析的基础上,研究了改进的Laplace金字塔分解的图像融合算法,并基于CUDA并行处理技术,在可编程GPU上实现了红外图像快速增强的目的。该算法结合GPU的内存特点,应用纹理映射、多点访问、并行触发技术,优化数据的存储结构,提高数据处理速度,适用于对红外图像增强的实时性要求较高的领域。实验结果表明,该算法有较好的并行特性,能充分利用CUDA的并行计算能力,提高了红外图像增强的实时性,处理分辨率为3 096×3 096的红外图像时加速比达32.189。To deal with the problem of edge blur and low contrast, of the infrared image in infrared image processing, improved median filtering and improved Sobel edge detection are discussed. After the image being processed by algorithms of improved median filtering and improved Sobel edge detection, the features of the image are analyzed so that the improved image fusion algorithm of Laplace pyramid is presented. Programmable GPU is used to realize the purpose of fast infrared image enhancement based on CUDA parallel processing technology. The improved image fusion algorithm of Laplace pyramid is suitable for high real-time require areas of infrared image enhancement because that texture mapping, multi-access and parallel triggering technology are combined with characteristics of the GPU memory to optimize the data storage structure and speed up the data processing. Experimental results show that the algorithm has good parallel properties and can improve the real-time of infrared image enhancement through effectively implementing CUDA parallel computing power. The speedup is up to 32.189 in the 3096 x 3096 infrared image processing.

关 键 词:红外图像增强 中值滤波 SOBEL边缘检测 Laplace金字塔 CUDA 可编程GPU 

分 类 号:TP21[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象