基于时频融合特征的3D空间手写识别  

3D Space Handwriting Recognition Based on Time-frequency Fusion Feature

在线阅读下载全文

作  者:严军[1] 陈晓丹[1] 沈海斌[1] 

机构地区:[1]浙江大学信息与电子工程学系,杭州310027

出  处:《计算机工程》2012年第18期15-18,共4页Computer Engineering

基  金:国家科技重大专项基金资助项目(2009ZX01031-001-007)

摘  要:研究基于3D加速度传感器的空间手写识别技术,提出一种基于时频融合特征的分类识别方法。从加速度数据中提取短时能量(STE)特征及低频分量,经快速傅里叶变换后提取频域特征WPD+FFT,将时域特征STE和频域特征WPD+FFT进行特征融合,利用主成分分析法对其降维,采用支持向量机进行分类识别。实验结果表明,该方法能提高空间手写识别系统的识别率。In the research of space handwriting recognition technology based on 3D accelerometer,a recognition method based on time-frequency fusion feature is proposed.From accelerometer data,it extracts the Short-time Energy(STE) feature.The hybrid feature which combines Wavelet Packet Decomposition with Fast Fourier Transform(WPD+FFT) are extracted,then the above two categories features are fused together and the Principal Component Analysis(PCA) is employed to reduce the dimension of the fusion feature.Supported Vector Machine(SVM) is used in recognition.Experimental results show that the proposed method can improve the performance of 3D space handwriting recognition system.

关 键 词:3D空间手写识别 短时能量 小波包分解 快速傅里叶变换 特征融合 支持向量机 

分 类 号:TP212.9[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象