针对大规模点集三维重建问题的分布式捆绑调整方法  

Distributed Bundle Adjustment in 3D Scene Reconstruction with Massive Points

在线阅读下载全文

作  者:刘鑫[1] 孙凤梅[2] 胡占义[1] 

机构地区:[1]中国科学院自动化研究所模式识别国家重点实验室,北京100190 [2]北方工业大学理学院,北京100144

出  处:《自动化学报》2012年第9期1428-1438,共11页Acta Automatica Sinica

基  金:国家自然科学基金(60973005);中国科学院战略性先导科技专项(XDA06030300)资助~~

摘  要:捆绑调整(Bundle adjustment,BA)是三维重建中的关键步骤,它需要消耗大量的计算时间和内存存储空间.本文旨在处理三维点数比相机模型数多很多的捆绑调整问题,我们称之为针对大规模三维点集的捆绑调整(Massive-points bundleadjustment,MPBA)问题.此类问题在对高分辨率图像进行三维重建时会经常出现.为了高效地解决MPBA问题,本文提出一种分布式的捆绑调整算法.通过基于三维点集划分的分解方法,原MPBA问题被分成若干子问题.该分解方法不依赖于输入参数的内在联系,因而分解结果与具体BA问题无关.算法被映射于两个集群上,一个集群有5台计算机,另一个集群有3台计算机,其中每台机器都配置一块图形处理器(Graphic processing unit,GPU).通过对若干MPBA问题的实验,与经典捆绑调整算法SBA(Sparse bundle adjustment)相比,本文算法获得了最高达75倍的加速比,并保持了算法的高精确度.而且,本文算法的两个实现所消耗的单机内存存储空间,仅为SBA实现的1/7和1/4.Bundle adjustment (BA) is a crucial step in 3D scene reconstruction but time and memory consuming. In this paper, we try to tackle a frequently encountered BA problem where the reconstructed 3D points are more numerous than the camera parameters, namely massive-points BA problem. This is often the case when high-resolution images are used. We present a novel distributed bundle adjustment (DBA) algorithm for efficiently solving the massive-points BA problem, where the original BA problem is divided into sub-problems by partitioning the 3D reconstructed points. Such a partition scheme is in dependent of the input parameters, it could be applied to various BA problems. Two specific implementations, one on a shared memory cluster of 5 computers and the other on a cluster of 3 GPU (Graphic processing unit)-integrated computers, are developed. These implementations are experimentally compared with the classical single- thread sparse bundle adjustment (SBA). Experimental results show that our algorithm is up to 75 times faster than SBA, while maintaining comparable precision. And the one-computer memory requirements of these two implementations are just 1/7 and 1/4 of the original SBA.

关 键 词:捆绑调整 计算机集群 图形处理器 运动相机重建三维结构 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象