A uniqueness theorem for indefinite Sturm-Liouville operators  

A uniqueness theorem for indefinite Sturm-Liouville operators

在线阅读下载全文

作  者:WANG Yu-ping 

机构地区:[1]Department of Applied Mathematics,Nanjing Forestry University,Nanjing,210037,Jiangsu,China

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2012年第3期345-352,共8页高校应用数学学报(英文版)(B辑)

基  金:Supported by the National Natural Science Foundation of China(11171152);the Jiangsu Natural Science Foundation of China(BK2010489)

摘  要:In this paper, we discuss the inverse problem for indefinite Sturm-Liouville operators on the finite interval [a, b]. For a fixed index n(n = 0, 1, 2,… ), given the weight function w(x), we will show that the spectral sets {λn(q, ha,hk)}+∞k=1 and {λ-n(q, hb,hk)}+∞k=1 for distinct hk are sufficient to determine the potential q(x) on the finite interval [a, b] and coefficients ha and hb of the boundary conditions.In this paper, we discuss the inverse problem for indefinite Sturm-Liouville operators on the finite interval [a, b]. For a fixed index n(n = 0, 1, 2,… ), given the weight function w(x), we will show that the spectral sets {λn(q, ha,hk)}+∞k=1 and {λ-n(q, hb,hk)}+∞k=1 for distinct hk are sufficient to determine the potential q(x) on the finite interval [a, b] and coefficients ha and hb of the boundary conditions.

关 键 词:Inverse problem uniqueness theorem indefinite Sturm-Liouville problem eigenvalue. 

分 类 号:O175.3[理学—数学] O174.52[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象