检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华北电力大学控制与计算机工程学院,保定071000
出 处:《仪器仪表用户》2012年第4期55-59,共5页Instrumentation
摘 要:BP神经网络算法本质上是基于梯度下降的一种迭代学习算法,存在学习收敛速度慢、收敛精度低、易陷入局部极小、学习率难以选取、隐层数及隐层神经元个数难以确定等缺陷。为了选择出更适宜变压器DGA故障诊断的神经网络结构及算法,本文采用了常用的几种智能算法对变压器故障样本进行了诊断性能对比实验。结果得出Levenberg-Marquardt神经网络算法是收敛速度较快的算法,有动量和自适应的梯度下降法是收敛稳定性较佳的算法;网络最优结构设计过程,为用于变压器DGA故障诊断的神经网络的结构和算法提供了系统化的试验方法。The algorithm of BP neural network is essentially an iterative learning based on gradient descent,there is slow learning convergence, low convergence accuracy, easy to fall into local minimum, the learning rate is difficult to select, hidden layers and hidden layer neuron numbers are difficult to determine defects. In order to select a more suitable structure and algorithm of neural network based on transformer DGA fault diagnosis,this paper uses several intelligent algorithm of transformer fault samples diagnostic performance comparison experiment. Results indicated that algorithm of LevenbergMarquardt neural network is faster algorithm,gradient momentum and adaptive convergence is stability better algorithm; network optimal structural design process,based fault diagnosis of transformer DGA method the neural network structure and algorithm provides a systematic test methods. The design process of the optimal structure provides systematic test method based on the structure of the neural networks and algorithm of transformer DGA fault diagnosis.
关 键 词:BP神经网络 变压器DGA故障诊断 神经网络算法与结构优化 训练与测试
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200