检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Mathematics,Tongji University,Shanghai 200092,China
出 处:《Journal of Computational Mathematics》2012年第4期404-417,共14页计算数学(英文)
摘 要:In this paper, a generalized preconditioned Hermitian and skew-Hermitian splitting (GPHSS) iteration method for a non-Hermitian positive-definite matrix is studied, which covers standard Hermitian and skew-Hermitian splitting (HSS) iteration and also many existing variants. Theoretical analysis gives an upper bound for the spectral radius of the iteration matrix. From practical point of view, we have analyzed and implemented inexact generalized preconditioned Hermitian and skew-Hermitian splitting (IGPHSS) iteration, which employs Krylov subspace methods as its inner processes. Numerical experiments from three-dimensional convection-diffusion iterations are efficient and competitive with equation show that the GPHSS and IGPHSS standard HSS iteration and AHSS iteration.In this paper, a generalized preconditioned Hermitian and skew-Hermitian splitting (GPHSS) iteration method for a non-Hermitian positive-definite matrix is studied, which covers standard Hermitian and skew-Hermitian splitting (HSS) iteration and also many existing variants. Theoretical analysis gives an upper bound for the spectral radius of the iteration matrix. From practical point of view, we have analyzed and implemented inexact generalized preconditioned Hermitian and skew-Hermitian splitting (IGPHSS) iteration, which employs Krylov subspace methods as its inner processes. Numerical experiments from three-dimensional convection-diffusion iterations are efficient and competitive with equation show that the GPHSS and IGPHSS standard HSS iteration and AHSS iteration.
关 键 词:Hermitian and skew-Hermitian splitting Iteration method Inner iteration.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7