基于非下采样Contourlet变换的医学CT图像去噪  被引量:5

Medical CT image denoising method based on nonsubsampled Contourlet transform

在线阅读下载全文

作  者:王昊[1,2] 康晓东[1] 刘玲玲[1] 耿佳佳[1] 

机构地区:[1]天津医科大学医学影像学院,天津300070 [2]河北大学附属医院介入科,河北保定071000

出  处:《计算机工程与应用》2012年第27期150-154,共5页Computer Engineering and Applications

基  金:国家自然科学基金(No.60603027);天津市应用基础研究计划(No.05YFJMJC11700)

摘  要:为克服Contourlet变换的非平移不变性及频谱混叠等缺陷,提出了一种基于非下采样Contourlet变换的医学CT图像去噪方法。对含噪的CT图像进行非下采样Contourlet变换,得到不同尺度及各个方向上的变换系数,利用Context模型将每个尺度每个方向子带分级,不同分级采用相应的阈值去噪。实验表明,该方法适宜于处理含有更多高斯噪声的医学CT图像,与其他方法相比提高了PSNR值,更好地保留了图像细节,改善了医学CT图像的质量。To overcome the Contourlet transform non translation invariance and spectrum aliasing defects, this pa- per presents a method based on nonsubsampled Contourlet transform for medical CT image denoising method. The noisy CT images are conducted by nonsubsampled Contourlet transform. Transform coefficients are obtained from different scales and different directions. Using Context model, subband of each scale and each direction is graded. Different classification uses the corresponding threshold denoising. Experiments show that this method is suitable to processing the medical CT image which contains more Gaussian noise. Compared with other methods, the PSNR value is improved, the image details are better retained, and CT image quality is improved.

关 键 词:图像处理 去噪 非下采样CONTOURLET变换 Context模型 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象