检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国矿业大学机电工程学院,江苏徐州221008 [2]泸州职业技术学院机电工程研究所,四川泸州646005
出 处:《计算机工程与应用》2012年第26期25-31,共7页Computer Engineering and Applications
基 金:四川省应用基础研究计划项目(No.2008JY0163);泸州市重点科技计划项目(No.2010-S-21(2/7))
摘 要:标准差分进化算法(SDE)具有算法简单,控制参数少,易于实现等优点。但在难优化问题中,算法存在收敛速度较慢和容易早熟等缺陷。为克服此缺点,提出一种改进算法——双种群差分进化规划算法(BGDEP)。该算法将种群划分为两个子群独立进化,分别采用DE/rand/1/bin和DE/best/2/bin版本生成变异个体。每隔δt(取5~10)代,将两个子群合并为一个种群,再应用混沌重组算子将之划分为两个子群,以实现子群间的信息交流。在双种群协同差分进化的同时,应用非均匀变异算子对其最优个体执行进化规划操作,使得算法具有较快的收敛速度和较强的全局寻优能力。为测试BGDEP的性能,给出了4个30维benchmark函数优化问题的对比数值实验。结果表明,BGDEP的求解精度、收敛速度、鲁棒性等性能优于SDE、双种群差分进化(BGDE)和非均匀变异进化规划(NUMEP)等4种算法。The Standard Differential Evolution (SDE) algorithm has the advantages of simplicity, few control pa- rameters required, and easily be used, but has the disadvantage of premature convergence and relatively slow rate for hard optimization problems. The improved DE algorithm, namely Bi-Group Differential Evolutionary Program- ming(BGDEP), is presented to overcome some drawbacks of the SDE algorithm. The proposed BGDEP algorithm divides the entire population into double subgroups which utilize DE/rand/I/bin and DE/best/2/bin schemes to gener- ate new mutate individuals to evolve next generation in parallel, respectively. In order to interact information be- tween double subgroups, the modified algorithm merges them into one whole population at intervals of ~t-periodic generations and divides subsequently this population into new double subgroups by using chaotic recombination op- erators. In every generation of co-evolution process of hi-group, the best individual in double subgroups is evolved by evolutionary programming with non-uniform mutation operators. Due to the above co-evolution, the proposed al- gorithm performs significantly fast and robust convergence, and performs a global exploratory search. 4 benchmark 30-dimensional functions in hard optimization fields are utilized to test comparatively performances of the new BGDEP algorithm and the experimental results show that this approach outperforms other 4 algorithms, such as SDEs (i.e., DE/rand/I/bin and DE/best/2/bin strategies), Bi-Group Differential Evolution (BGDE) and Evolutionary Program- ming with Non-Uniform Mutation (NUMEP), etc., in terms of solution accuracy, robustness, convergence speed and global exploring ability.
关 键 词:差分进化算法 进化规划算法 双种群 混沌重组策略 非均匀变异
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222