CHMM语音识别初值选择方法的研究  被引量:4

Study of Initial Value Selection Method for Speech Recognition Based on Continuous Hidden Markov Models

在线阅读下载全文

作  者:刘伶俐[1] 王朝立[1] 于震[1] 

机构地区:[1]上海理工大学光电信息与计算机工程学院,上海200093

出  处:《上海理工大学学报》2012年第4期323-326,共4页Journal of University of Shanghai For Science and Technology

摘  要:针对隐马尔科夫模型用于语音识别时传统的参数初始化方法(随机分布之值、K均值算法)可能导致模型参数收敛于局部最优而非全局最优的问题,提出了先按最大距离选择初值中心,再按最小距离将原始数据分割成小类后去除类内干扰点,使类内相似性更强的K均值方法.实验结果表明,改进后的方法与传统方法相比,更好地平滑逼近语音特征,提高语音的识别率.Given that traditional method of hidden Markov models parameter initialization for speech recognition (random method, k-means) can lead to convergence in local optimization of model parameters rather than global optimization problems. A new approach was proposed with three steps. First, the initial center was selected according to the maximum distance; second, the original data was split into small kinds by the minimum distance; finally, the interference point in the small kind was eliminated. The method resulted in much more similarity k-means than traditional method in the kind. Experimental results show that the improved method has the better approximation of smooth voice characteristics and improves the speech recognition rates which comparing with traditional methods.

关 键 词:隐马尔科夫模型 语音识别 参数初始化 K均值算法 

分 类 号:TP319[自动化与计算机技术—计算机软件与理论] N94[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象