检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]吉林化工学院信息与控制工程学院,吉林省吉林市132022 [2]哈尔滨工业大学电气工程系,哈尔滨150001
出 处:《计算机工程与应用》2012年第29期55-58,113,共5页Computer Engineering and Applications
基 金:吉林省科技发展计划项目(No.2009148);吉林省教育厅"十二五"科学技术研究项目(No.2011262)
摘 要:目前神经网络已经成为解决非线性系统辨识问题的一类有效的方法,但是常用的多层感知器存在网络稳定性差、收敛速度慢的问题。在多层感知器和傅里叶级数基础上提出的傅里叶神经网络具有较好的泛化性、模式识别能力,但其学习算法主要采用最速下降法,易产生陷入局部极小,学习速度慢等问题。提出一种采用双折线步方法的傅里叶神经网络,避免了局部极小问题,且具有二阶收敛速度。通过相应的数值算例验证新算法的性能,并应用于非线性系统的识别问题中,其结果和几类经典的神经网络算法做了相应的对比和分析。Neural network has been one of effective tools in dealing with non-linear system recognition problem.However,the common multilayer perceptron has some faults,such as instability,and low convergence velocity.Based on multilayer perceptron and Fourier series,a kind of neural network,named Fourier neural network,is proposed.Compared with traditional multilayer perceptron,Fourier neural network has better pattern classification ability and generalization property.Since the existent Fourier neural network adopts method of steepest descent which induces the problems of local minimum and low learning velocity,it constructs an improved Fourier neural network based on the double dogleg step method and utilizes this network in dealing with non-linear system recognition problem.The double dogleg step method avoids the local minimum problem and has two-order convergence velocity.Several simulation examples are utilized to validate the performance of the improved network,and the results are compared with some results obtained from several other classical neural networks.Meanwhile the new network is applied to solve non-linear system recognition problem compared with results from other methods.
关 键 词:非线性系统辨识 傅里叶神经网络 最速下降法 双折线步方法
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147