Lipschitz equivalence of fractal sets in R  

Lipschitz equivalence of fractal sets in R

在线阅读下载全文

作  者:DENG GuoTai HE XingGang 

机构地区:[1]College of Mathematics and Statistics,Central China Normal University,Wuhan 430079,China

出  处:《Science China Mathematics》2012年第10期2095-2107,共13页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China (Grant No.10871180)

摘  要:Let T(q, D) be a self-similar (fractal) set generated by {fi(x) = 1/q((x + di)}^Ni=1 where integer q 〉 1and D = {d1, d2 dN} C R. To show the Lipschitz equivalence of T(q, D) and a dust-iik-e T(q, C), one general restriction is 79 C Q by Peres et al. [Israel] Math, 2000, 117: 353-379]. In this paper, we obtain several sufficient criterions for the Lipschitz equivalence of two self-similar sets by using dust-like graph-directed iterating function systems and combinatorial techniques. Several examples are given to illustrate our theory.Let T(q,D) be a self-similar(fractal) set generated by {fi(x) = 1 q(x + di)}iN=1 where integer q > 1 and D = {d1,d2,...,dN } R.To show the Lipschitz equivalence of T(q,D) and a dust-like T(q,C),one general restriction is D Q by Peres et al.[Israel J Math,2000,117:353-379].In this paper,we obtain several sufficient criterions for the Lipschitz equivalence of two self-similar sets by using dust-like graph-directed iterating function systems and combinatorial techniques.Several examples are given to illustrate our theory.

关 键 词:dust-like graph-directed iterating function systems Lipschitz equivalence self-similar sets 

分 类 号:O174.41[理学—数学] O171[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象