检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]College of Mathematics and Statistics,Central China Normal University,Wuhan 430079,China
出 处:《Science China Mathematics》2012年第10期2095-2107,共13页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China (Grant No.10871180)
摘 要:Let T(q, D) be a self-similar (fractal) set generated by {fi(x) = 1/q((x + di)}^Ni=1 where integer q 〉 1and D = {d1, d2 dN} C R. To show the Lipschitz equivalence of T(q, D) and a dust-iik-e T(q, C), one general restriction is 79 C Q by Peres et al. [Israel] Math, 2000, 117: 353-379]. In this paper, we obtain several sufficient criterions for the Lipschitz equivalence of two self-similar sets by using dust-like graph-directed iterating function systems and combinatorial techniques. Several examples are given to illustrate our theory.Let T(q,D) be a self-similar(fractal) set generated by {fi(x) = 1 q(x + di)}iN=1 where integer q > 1 and D = {d1,d2,...,dN } R.To show the Lipschitz equivalence of T(q,D) and a dust-like T(q,C),one general restriction is D Q by Peres et al.[Israel J Math,2000,117:353-379].In this paper,we obtain several sufficient criterions for the Lipschitz equivalence of two self-similar sets by using dust-like graph-directed iterating function systems and combinatorial techniques.Several examples are given to illustrate our theory.
关 键 词:dust-like graph-directed iterating function systems Lipschitz equivalence self-similar sets
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.37.17