两个拟互素因子链上倒数幂GCD与倒数幂LCM矩阵的非奇异性  

Nonsingularity of the reciprocal power GCD matrices and the reciprocal power LCM matrices on two quasi-coprime divisor chains

在线阅读下载全文

作  者:林宗兵[1] 谭千蓉[1] 

机构地区:[1]攀枝花学院数学与计算机学院,攀枝花617000

出  处:《四川大学学报(自然科学版)》2012年第5期965-969,共5页Journal of Sichuan University(Natural Science Edition)

基  金:国家自然科学基金(10971145);攀枝花市应用技术研究与开发项目(2012CY-G-26)

摘  要:设S={x_1,x_2,…,x_n}是一个正整数的集合,a是一个正实数.如果一个n阶矩阵的第i行第j列的元素定义为1/(x_i,x_j)~a,其中(x_i,x_j)~a表示S中的元素x_1与x_j的最大公因数的a次幂,则称这个矩阵是定义在S上的倒数幂GCD矩阵,用(1/S^a)表示.类似可定义倒数幂LCM矩阵[1/S^a].作者得到了定义在两个拟互素因子链上的倒数幂GCD矩阵与倒数幂LCM矩阵的行列式公式,并由此证明了定义在两个拟互素因子链上的倒数幂GCD矩阵与倒数幂LCM矩阵均是非奇异的.Let S = {x1 ,x2,… ,xn } be a set of n distinct positive integers and a ≥ 0 be a real number. The matrix having the ath power 1/(xi,xj)a as its (i,j) -entry is called reciprocal power greatest common divisor (GCD) matrix defined on S, denoted by (1/Sa). where (xi ,xj )4 = (gcd(xi ,xj ) )a. Similarly we can define reciprocal power LCM matrix [1/Sa] on S. In this paper, the authors first obtain formulaes for the determinants of reciprocal power GCD matrix and reciprocal power LCM matrix defined on S which con- sists of two quasi-coprime divisor chains and gcd(S) E S. Then they show that the reciprocal power GCD matrix and the reciprocal power LCM matrix defined on two quasi-coprime divisor chains S with gcd(S) ∈ S are nonsingular.

关 键 词:拟互素因子链 最大型因子 倒数幂GCD矩阵 倒数幂LCM矩阵 

分 类 号:O153[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象