Proteomic response of wheat embryos to fosthiazate stress in a protected vegetable soil  被引量:1

Proteomic response of wheat embryos to fosthiazate stress in a protected vegetable soil

在线阅读下载全文

作  者:Chunyan Yin Ying Teng Yongming Luo Peter Christie 

机构地区:[1]Key Laboratory of Soil Environment and Pollution Remediation,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008,China [2]Graduate University of Chinese Academy of Sciences,Beijing 100049,China [3]Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences,Yantai 264003,China [4]Agri-Environment Branch,Agri-Food and Biosciences Institute,Newforge Lane,Belfast BT95PX,United Kingdom

出  处:《Journal of Environmental Sciences》2012年第10期1843-1853,共11页环境科学学报(英文版)

基  金:supported by the National Environmental Protection special funds for scientific research on public causes of China(No.2010467016);the Natural Science Foundation of Jiangsu Province(No.BK2009016);the Program of Innovative Engineering of the Chinese Academy of Sciences(No.KZCX2-YW-Q02-06-02, KZCW2-YW-404);Supporting data associated with this article can be found in the online version

摘  要:A proteomic analysis of wheat defense response induced by the widely used organophosphorus nematicide fosthiazate is reported. Seed germination and two-dimensional gel electrophoresis (2-DE) experiments were performed using a Chinese wheat cultivar, Zhenmai No. 5. Root and shoot elongation decreased but thiobarbituric acid reactive substances (TBARS) content in embryos increased with increasing pesticide concentration. More than 1000 protein spots were reprodueibly detected in each silver-stained gel. Thirty-seven protein spots with at least 2-fold changes were identified using MALDI-TOF MS/MS analysis. Of these, 24 spots were up-regulated and 13 were down-regulated. Proteins identified included some well-known classical stress responsive proteins under abiotic or biotic stresses as well as some unusual responsive proteins. Ten responsive proteins were reported for the first time at the proteomic level, including fatty acyl CoA reductase, dihydrodipicolinate synthase, DEAD-box ATPase-RNA-helicase, fimbriata-like protein, waxy B 1, rust resistance kinase Lrl0, putative In2.1 protein, retinoblastoma-related protein 1, pollen allergen-like protein and S-adenosyl-L- methionine:phosphoethanolamine N-methyltransferase. The proteins identified were involved in several processes such as metabolism, defense/detoxification, cell structure/ceU growth, signal transduction]transcription, photosynthesis and energy. Seven candidate proteins were further analyzed at the mRNA level by RT-PCR to compare transcript and protein accumulation patterns, revealing that not all the genes were correlated well with the protein level. Identification of these responsive proteins may provide new insight into the molecular basis of the fosthiazate-stress response in the early developmental stages of plants and may be useful in stress monitoring or stress-tolerant crop breeding for environmentally friendly agricultural production.A proteomic analysis of wheat defense response induced by the widely used organophosphorus nematicide fosthiazate is reported. Seed germination and two-dimensional gel electrophoresis (2-DE) experiments were performed using a Chinese wheat cultivar, Zhenmai No. 5. Root and shoot elongation decreased but thiobarbituric acid reactive substances (TBARS) content in embryos increased with increasing pesticide concentration. More than 1000 protein spots were reprodueibly detected in each silver-stained gel. Thirty-seven protein spots with at least 2-fold changes were identified using MALDI-TOF MS/MS analysis. Of these, 24 spots were up-regulated and 13 were down-regulated. Proteins identified included some well-known classical stress responsive proteins under abiotic or biotic stresses as well as some unusual responsive proteins. Ten responsive proteins were reported for the first time at the proteomic level, including fatty acyl CoA reductase, dihydrodipicolinate synthase, DEAD-box ATPase-RNA-helicase, fimbriata-like protein, waxy B 1, rust resistance kinase Lrl0, putative In2.1 protein, retinoblastoma-related protein 1, pollen allergen-like protein and S-adenosyl-L- methionine:phosphoethanolamine N-methyltransferase. The proteins identified were involved in several processes such as metabolism, defense/detoxification, cell structure/ceU growth, signal transduction]transcription, photosynthesis and energy. Seven candidate proteins were further analyzed at the mRNA level by RT-PCR to compare transcript and protein accumulation patterns, revealing that not all the genes were correlated well with the protein level. Identification of these responsive proteins may provide new insight into the molecular basis of the fosthiazate-stress response in the early developmental stages of plants and may be useful in stress monitoring or stress-tolerant crop breeding for environmentally friendly agricultural production.

关 键 词:FOSTHIAZATE PROTEOMIC wheat embryo stress response biological indicator 

分 类 号:S884.31[农业科学—特种经济动物饲养] Q51[农业科学—畜牧兽医]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象