On the Seidel Integral Complete Multipartite Graphs  

On the Seidel Integral Complete Multipartite Graphs

在线阅读下载全文

作  者:Sheng-mei LV Liang WEI Hai-xing ZHAO 

机构地区:[1]Department of Mathematics,Qinghai Nationality University [2]Department of Mathematics,Qinghai Normal University

出  处:《Acta Mathematicae Applicatae Sinica》2012年第4期705-710,共6页应用数学学报(英文版)

基  金:Supported by the National Natural Science Foundation of China (No.60863006);Program for New Century Excellent Talents in University (No.06-0912)

摘  要:For a simple undirected graph G, denote by λ(G) the (0, 1)-adjacency matrix of G. Let the matrix S(G) = J-I-2A(G) be its Seidel matrix, and let SG(A) = det(AI-S(G)) be its Seidel characteristic polynomial, where I is an identity matrix and J is a square matrix all of whose entries are equal to 1. If all eigenvalues of SG(λ) are integral, then the graph G is called S-integral, In this paper, our main goal is to investigate the eigenvalues of SG(A) for the complete multipartite graphs G = Kn1,n2,...,n,. A necessary and sufficient condition for the complete tripartite graphs Km,n,t and the complete multipartite graphs Km,.... m,n,...,n to be S-integral is given, respectively.For a simple undirected graph G, denote by λ(G) the (0, 1)-adjacency matrix of G. Let the matrix S(G) = J-I-2A(G) be its Seidel matrix, and let SG(A) = det(AI-S(G)) be its Seidel characteristic polynomial, where I is an identity matrix and J is a square matrix all of whose entries are equal to 1. If all eigenvalues of SG(λ) are integral, then the graph G is called S-integral, In this paper, our main goal is to investigate the eigenvalues of SG(A) for the complete multipartite graphs G = Kn1,n2,...,n,. A necessary and sufficient condition for the complete tripartite graphs Km,n,t and the complete multipartite graphs Km,.... m,n,...,n to be S-integral is given, respectively.

关 键 词:S-polynomial S-integral complete multipartite graphs 

分 类 号:O157.5[理学—数学] O172.2[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象