基于剪枝的海量数据离群点挖掘  被引量:6

Pruning-based Outlier Mining from Large Dataset

在线阅读下载全文

作  者:杨茂林[1] 卢炎生[1] 

机构地区:[1]华中科技大学计算机科学与技术学院,武汉430074

出  处:《计算机科学》2012年第10期152-156,共5页Computer Science

摘  要:基于距离的离群点挖掘通常需要O(N2)的时间进行大量的距离计算与比较,这限制了其在海量数据上的应用。针对此问题,提出了一个带剪枝功能的离群点挖掘算法。算法分为两步:在对数据集进行一遍扫描后,剪枝掉大量的非离群点;然后对余下的可疑数据实施一种改进的嵌套循环算法,以每个数据点与其k个最近邻点的平均距离作为离群度,确定前n个离群点。在真实数据和合成数据集上的实验结果均表明,该算法在获得高命中率的同时仍保持低误警率。与相关算法相比,其具有较低的时间复杂性。Distance-based outlier detection approach typically requires O(N2) time of distance computation and compari-son.This quadratic scaling restricts the ability to apply this approach to large datasets.To overcome this limitation,a novel distance-based outlier mining approach with pruning rules was proposed.The approach consists of two phases.During the first phase,the original input data are scanned and the majority of non-outliers are pruned.During second phase,an improved nested loops approach is applied to compute the average K-nearest distance which measures the degree of being an outlier and finally reports the top-n outliers.Experiments on both synthetic data and real-life data show that the proposed approach achieves a high hit rate with a low false alarm rate.Compared with related approaches,the proposed approach has a lower time complexity.

关 键 词:离群点 数据挖掘 基于距离 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象