检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华中科技大学计算机科学与技术学院,武汉430074
出 处:《计算机科学》2012年第10期152-156,共5页Computer Science
摘 要:基于距离的离群点挖掘通常需要O(N2)的时间进行大量的距离计算与比较,这限制了其在海量数据上的应用。针对此问题,提出了一个带剪枝功能的离群点挖掘算法。算法分为两步:在对数据集进行一遍扫描后,剪枝掉大量的非离群点;然后对余下的可疑数据实施一种改进的嵌套循环算法,以每个数据点与其k个最近邻点的平均距离作为离群度,确定前n个离群点。在真实数据和合成数据集上的实验结果均表明,该算法在获得高命中率的同时仍保持低误警率。与相关算法相比,其具有较低的时间复杂性。Distance-based outlier detection approach typically requires O(N2) time of distance computation and compari-son.This quadratic scaling restricts the ability to apply this approach to large datasets.To overcome this limitation,a novel distance-based outlier mining approach with pruning rules was proposed.The approach consists of two phases.During the first phase,the original input data are scanned and the majority of non-outliers are pruned.During second phase,an improved nested loops approach is applied to compute the average K-nearest distance which measures the degree of being an outlier and finally reports the top-n outliers.Experiments on both synthetic data and real-life data show that the proposed approach achieves a high hit rate with a low false alarm rate.Compared with related approaches,the proposed approach has a lower time complexity.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147