Estimating temperature-dependent developmental rates of potato tuberworm, Phthorimaea operculella (Lepidoptera: Gelechiidae)  

Estimating temperature-dependent developmental rates of potato tuberworm, Phthorimaea operculella (Lepidoptera: Gelechiidae)

在线阅读下载全文

作  者:Ali Golizadeh Myron P. Zalucki 

机构地区:[1]Department of Plant Protection, Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran, [2]School of Biological Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia

出  处:《Insect Science》2012年第5期609-620,共12页昆虫科学(英文版)

摘  要:The potato tuberworm, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), is the most destructive pest of potato, Solanum tuberosum L. (Solanaceae), in tropical and subtropical regions in both field and storeroom situations. The modeling of temperature-dependent development can be useful in forecasting occurrence and population dynamics of the pests. Published developmental parameters for this pest vary greatly for many reasons. We determined temperature-dependent development ofP operculella at seven constant temperatures (16, 20, 24, 28, 32, 34 and 36℃). Developmental period of whole immature stage (egg to the end of the pupal stage) varied from 75.5 days at 16℃ to 17 days at 32℃ The population failed to survive at 36℃. The observed data was modeled to determine mathematical functions for simulating P operculella development in each stage of development and overall. Two linear models, ordinary linear regression and the Ikemoto linear model were used to describe the relationship between temperature and de- velopment rate of the different stages ofP. operculella and estimating the thermal constant and lower temperature threshold. The lower temperature threshold (t) and thermal constant (k) of whole immature stage were estimated to be 11.6~C and 338.5 DD by Ikemoto linear model, and the estimated parameters were not substantially different with those estimated by ordinary linear models. Different models provided a better fit to the various develop- mental stages. Of the eleven nonlinear models fitted, the Beriere-1, Logan-6 and Lactin-1 model was found to be the best for modeling development rate of egg, larva and pupa of P. operculella, respectively. Phenological models based on these findings can be part of a decision-support tool to improve the efficiency of pest management programs.The potato tuberworm, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), is the most destructive pest of potato, Solanum tuberosum L. (Solanaceae), in tropical and subtropical regions in both field and storeroom situations. The modeling of temperature-dependent development can be useful in forecasting occurrence and population dynamics of the pests. Published developmental parameters for this pest vary greatly for many reasons. We determined temperature-dependent development ofP operculella at seven constant temperatures (16, 20, 24, 28, 32, 34 and 36℃). Developmental period of whole immature stage (egg to the end of the pupal stage) varied from 75.5 days at 16℃ to 17 days at 32℃ The population failed to survive at 36℃. The observed data was modeled to determine mathematical functions for simulating P operculella development in each stage of development and overall. Two linear models, ordinary linear regression and the Ikemoto linear model were used to describe the relationship between temperature and de- velopment rate of the different stages ofP. operculella and estimating the thermal constant and lower temperature threshold. The lower temperature threshold (t) and thermal constant (k) of whole immature stage were estimated to be 11.6~C and 338.5 DD by Ikemoto linear model, and the estimated parameters were not substantially different with those estimated by ordinary linear models. Different models provided a better fit to the various develop- mental stages. Of the eleven nonlinear models fitted, the Beriere-1, Logan-6 and Lactin-1 model was found to be the best for modeling development rate of egg, larva and pupa of P. operculella, respectively. Phenological models based on these findings can be part of a decision-support tool to improve the efficiency of pest management programs.

关 键 词:development time linear model MODELING nonlinear model Phthorimaeaoperculella thermal characteristics 

分 类 号:S435.32[农业科学—农业昆虫与害虫防治] TN911.73[农业科学—植物保护]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象