检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘洪伟[1] 石雅强[1] 叶珊珊[1] 梁周扬[1]
出 处:《统计与决策》2012年第19期94-96,共3页Statistics & Decision
基 金:国家自然科学基金资助项目(70971027)
摘 要:支持向量机(SVM)是数据挖掘中非常流行的分类算法,得到了广泛的关注。数据泄露问题日渐凸显,数据挖掘中的隐私保护也成为当今研究热点,但是针对SVM隐私保护的研究较少。我们提出了基于旋转扰动的SVM隐私保护算法,该算法引入正交旋转变换方法,具有分类零损失的特性。文章采用传统数据安全评价方法,并利用UCI机器学习中心提供的数据对该算法的隐私性水平进行了分析。理论验证和实验结果表明,我们提出了令人满意的SVM隐私保护算法。
分 类 号:O23[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28