检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]福州大学化学化工学院,福建福州350108 [2]南京理工大学机械工程学院,江苏南京210094
出 处:《计算机与应用化学》2012年第9期1147-1152,共6页Computers and Applied Chemistry
基 金:国家自然科学基金项目(6080402)
摘 要:针对过程工业普遍存在的扰动和不确定性动态对控制系统经济性能的影响,依据控制要求对过程变量设置相应的机会约束条件来处理这一问题,并将经济性能评估问题转化为一系列不确定规划问题。对系统关键变量方差的合理估计是对预测控制系统进行经济性能评估的一个关键步骤,为了提高评估结果的合理性,引入LQG性能基准估计过程方差的变化率。在求解优化问题获得经济性能评估结果的基础上对控制系统经济效益潜力进行分析,并确定了提高控制系统经济性能的最佳途径和相应的控制策略。通过预测控制系统仿真算例说明了该评估算法的有效性和可操作性。A stochastic optimization approach for economic performance assessment of the model predictive control (MPC) under uncertainty is presented. Performance evaluation problems are formulated as the stochastic problems which incorporate the uncertainties in both process operation and economic objective. Such problem formulation helps to identify the opportunity of improving the profitability of the process by taking appropriate risks. Both the steady state economic benefit and the optimal operation eonditions can be obtained by solving the defined economic optimization problems. Further, the proposed method uses the linear quadratic Guassian (LQG) benchmark other than conventional minimum variance control (MVC) benchmark to estimate potential of variance reduction, which results in a more reasonable performance assessment. To exploit feasible economic performance of the MPC systems, the proposed approach considers the uncertainties induced by process variability and evaluates the economic performance through stochastic solving optimization problem. Results of the performance evaluation provide a guideline for the control system tuning to realize the potential improvement in profitability of process. The proposed algorithm is also illustrated by a simulated example of the model predictive control system.
分 类 号:TQ015.9[化学工程] TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.43.181