检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河南师范大学数学与信息科学学院,河南新乡453007 [2]新乡学院数学系,河南新乡453003
出 处:《应用数学》2012年第4期764-770,共7页Mathematica Applicata
基 金:Supported by the National Natural Science Foundation of China (11171094,11171368);the Key Scientific and Technological Project of Henan Province (122102210132)
摘 要:对一类新的非线性比式和问题(SNR)提出分枝定界算法,该问题的研究还很少.首先,通过两层线性化技术,构造一个松弛线性规划,求解该线性规划问题,得到问题(SNR)最优值的下界.其次,介绍新的下界更新技术,证明所给算法的收敛性.A branch and bound algorithm is presented to solve a sum of nonlinear ratios problem (SNR) that there has been little progress on research. First, a linear relaxation programming prob- lem which is solved and provides a lower bound for the optimal value of (SNR) is constructed by a two-level linear relaxation technique. Next, a new updating lower bound technique is introduced. The proposed algorithm is proven to be convergent to a global minimum. The numerical experiments show the feasibility and effectiveness of the algorithm.
分 类 号:O221.2[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117