检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]四川大学电气信息学院,四川成都610065 [2]四川省电力公司映秀湾发电总厂,四川成都611830
出 处:《电工电能新技术》2012年第4期92-96,共5页Advanced Technology of Electrical Engineering and Energy
摘 要:提出了运用一种改进的遗传算法对电力负荷特性进行分类的新方法。通过对样本进行遗传操作,求出适应度最高的个体,解码得到最优聚类中心,再根据样本与各中心距离进行划分,从而得到负荷样本的最优分类结果,用获得分类的聚类中心对所属类别样本进行拟合以检验分类效果。改进后的遗传算法的交叉概率和变异概率随进化过程自适应变化,在保证遗传算法良好的全局性和随机性的同时,避免了早熟收敛和收敛过慢。实际算例表明,用这种改进遗传算法对电力负荷特性进行分类,能够有效避免初始条件对分类结果的过度影响,取得了良好的分类效果。A new method based on improved genetic algorithm is presented for load characteristics classification. The best individual which is of the highest fitness can be obtained by genetic manipulation on samples, and the individual is decoded to get the best cluster center, then the optimal classification is obtained by dividing samples based on the distance of the samples and the cluster centers, and finally the samples are fitted with the cluster centers of respective categories to test the classification accuracy. While ensuring the overall performance and randomness of adaptive genetic algorithm, the adaptive changing of the crossover probability and mutation probability with the process of evolution proposed in this paper can avoid the premature convergence and slow convergence which may appear in traditional genetic algorithm. Practical examples show that it can avoid the excessive impact of the in- itial conditions on the classification results and achieves desired classification results when classifying load charac- teristics with adaptive genetic algorithm.
关 键 词:负荷特性分类 聚类 遗传算法 自适应 实测响应空间
分 类 号:TM714[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249