EXISTENCE OF SOLUTIONS TO THE PARABOLIC EQUATION WITH A SINGULAR POTENTIAL OF THE SOBOLEV-HARDY TYPE  

EXISTENCE OF SOLUTIONS TO THE PARABOLIC EQUATION WITH A SINGULAR POTENTIAL OF THE SOBOLEV-HARDY TYPE

在线阅读下载全文

作  者:韩军强 王永达 钮鹏程 

机构地区:[1]Department of Applied Mathematics,Northwestern Polytechnical University

出  处:《Acta Mathematica Scientia》2012年第5期1901-1918,共18页数学物理学报(B辑英文版)

基  金:supported by NPU Foundation for Fundamental Research (NPU-FFR-JC201124);NSF of China (10871157,11001221,11002110);Specialized Research Fund for the Doctoral Program in Higher Education (200806990032)

摘  要:We study the existence of solutions to the following parabolic equation{ut-△pu=λ/|x|s|u|q-2u,(x,t)∈Ω×(0,∞),u(x,0)=f(x),x∈Ω,u(x,t)=0,(x,t)∈Ω×(0,∞),(P)}where-△pu ≡-div(|▽u|p-2▽u),1〈p〈N,0〈s≤p,p≤q≤p*(s) = N-s/N-pp,Ω is a bounded domain in RN such that 0∈Ω with a C1 boundaryΩ,f≥0 satisfying some convenient regularity assumptions.The analysis reveals that the existence of solutions for(P) depends on p,q,s in general,and on the relation between λ and the best constant in the Sobolev-Hardy inequality.We study the existence of solutions to the following parabolic equation{ut-△pu=λ/|x|s|u|q-2u,(x,t)∈Ω×(0,∞),u(x,0)=f(x),x∈Ω,u(x,t)=0,(x,t)∈Ω×(0,∞),(P)}where-△pu ≡-div(|▽u|p-2▽u),1〈p〈N,0〈s≤p,p≤q≤p*(s) = N-s/N-pp,Ω is a bounded domain in RN such that 0∈Ω with a C1 boundaryΩ,f≥0 satisfying some convenient regularity assumptions.The analysis reveals that the existence of solutions for(P) depends on p,q,s in general,and on the relation between λ and the best constant in the Sobolev-Hardy inequality.

关 键 词:nonlinear parabolic equations EXISTENCE Sobolev-Hardy inequality singular potential 

分 类 号:O241.82[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象