检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:方匡南[1,2] 吴见彬[1] 朱建平[1,2] 谢邦昌[1,2]
机构地区:[1]厦门大学经济学院计划统计系,福建厦门361005 [2]厦门大学数据挖掘研究中心,福建厦门361005
出 处:《统计与信息论坛》2011年第3期32-38,共7页Journal of Statistics and Information
基 金:中央高校基本科研业务费专项资金<基于数据挖掘的数据质量管理研究>(2010221040);国家统计局重点项目<金融风险中的统计方法>(2009LZ045)
摘 要:随机森林(RF)是一种统计学习理论,它是利用bootsrap重抽样方法从原始样本中抽取多个样本,对每个bootsrap样本进行决策树建模,然后组合多棵决策树的预测,通过投票得出最终预测结果。它具有很高的预测准确率,对异常值和噪声具有很好的容忍度,且不容易出现过拟合,在医学、生物信息、管理学等领域有着广泛的应用。为此,介绍了随机森林原理及其有关性质,讨论其最新的发展情况以及一些重要的应用领域。Random Forests is a statistical learning theory,using bootsrap re-sampling method form sample sets,and then combining the tree predictors by majority voting so that each tree is grown using a new bootstrap training set.It is widely applied in medicine,bioinformatics,economics and other fields,because of its high prediction accuracy,good tolerance of noisy data,and the law of large numbers they do not overfit.In this paper we first introduce the concept of random forest and the latest research,then provide some important aspects of applications in economics,and a summary is given in the final section.
分 类 号:O212[理学—概率论与数理统计] F222.3[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28