局部β-凸空间L~β(μ,X)(0<β≤1)的共轭锥的次表示定理  被引量:2

The Subrepresentation Theorem of the Conjugate Cone of Locally β-Convex Space L~β(μ,X)(0<β≤1)

在线阅读下载全文

作  者:王见勇[1] 

机构地区:[1]常熟理工学院数学系,常熟215500

出  处:《数学学报(中文版)》2012年第6期961-974,共14页Acta Mathematica Sinica:Chinese Series

基  金:国家自然科学基金资助项目(10871141)

摘  要:对于0<β≤1,有限测度空间(Ω,Σ,μ)与Hilbert空间X,本文研究向量值局部β-凸函数空间L~β(μ,X)的共轭锥[L~β(μ,X)]_β~*的表示问题.在赋范锥(X_β~*,‖-‖)对μ满足Randon-Nikodym性质的条件下,证明次表示定理[L~β(μ,X)]_β~*(?)L~∞(μ,X_β~*).For 0 β≤1,finite measure space(Ω,∑,μ) and Hilbert space X,thispaper deals with the representation problem of the conjugate cone[L~β(μ,X)]_β~* of locallyβ-convex space L~β(μ,X).If the normed conjugate space(X_β~*,|| ? ||) has the RandonNikodymproperty with respect toμ,this paper show the subrepresentaion theorem[L~β(μ,X)]_β~*(?)L~∞(μ,X_β~*).Introducing the concept of quasi-additivity and to transforma general element in[L^p(μ,X)]_p~* into its adjoint functional are the key techniques ofthis paper.

关 键 词:局部Β-凸空间 (赋范)共轭锥 次表示 伴随泛函 

分 类 号:O177.3[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象