检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南交通大学力学与工程学院,四川成都610031 [2]中国民航飞行学院飞行技术系,四川广汉618307
出 处:《工程力学》2012年第11期40-45,共6页Engineering Mechanics
基 金:国家自然科学基金项目(10972185);中国民航飞行学院面上项目(J2010-77)
摘 要:基于一阶活塞气动力理论,根据Von Karman大变形应变-位移关系并用伽辽金方法建立了壁板颤振方程,分析边界松驰,面内力及壁板几何尺寸对壁板颤振响应特性的影响。结果表明:随边界约束的松驰,颤振临界动压减小,系统的静态稳定性降低,而屈曲和混沌运动的可能性增大;即使来流动压小于初始边界条件颤振临界动压,随边界的松驰,壁板可能产生极限环振动或混沌振动;较大轴力压力和较小的长宽比不利于壁板的稳定。Based on the first piston theory of supersonic aerodynamics, the flutter differential equations of a three dimension panel are set up according to the Von Karman large deformation strain-displacement relation by using a Galerkin approach. The influence of a boundary condition relaxation, in-plane load and length-to-width ratios of panel are analyzed. The results show that with the relaxation of boundary conditions the critical dynamic pressures acting on the panel reduce and the static stability of system decreases, while the probability of buckle and chaos increase as the relaxation of boundary conditions. The results also indicate even though the dynamic pressure is less than the critical dynamic pressure, the panel is likely to experience limit cycle oscillations or chaotic motion as the relaxation of boundary conditions. In addition, the more compression in-plane loads and the lower length-to-width ratio are no beneficial to the flutter stability of the panel.
分 类 号:V215.3[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200