检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中南林业科技大学涉外学院,湖南长沙410004 [2]宜春学院物理科学与工程技术学院,江西宜春336000 [3]中南大学信息科学与工程学院,湖南长沙410083
出 处:《智能系统学报》2012年第5期462-466,共5页CAAI Transactions on Intelligent Systems
基 金:国家自然科学基金资助项目(60874069)
摘 要:为了解决多效蒸发过程具有高噪声和非平稳等特性的参数时间序列预测问题,提出了一种基于小波变换结合GM(1,1)和LSSVM的蒸发过程参数预测方法.该方法首先利用Mallat算法对参数时间序列进行分解和重构,分离出序列中的低频信息和高频信息;然后对低频信息构建GM(1,1)模型,对高频信息则用最小二乘支持向量机进行拟合;最后将各模型的预测结果进行叠加,从而得到最终的预测结果.以氧化铝多效蒸发过程的生产数据进行了实验验证,结果表明,该预测算法切实可行且优于单一的GM(1,1)和LSSVM方法,具有较好的泛化性能和较强的鲁棒性,可用于氧化铝生产蒸发过程的优化控制.A parameter prediction method was proposed for solving the timeseries prediction problem on the param eters of the multieffect evaporation process with high noise and nonstationary, combining GM (1, 1 ) and least squares support vector machines (LSSVM) based on the wavelet transform model. Firstly, the Mallat algorithm was used to decompose and reconstruct the time series of parameters, in order to separate low frequency and highfrequency sequence. Next, the GM (1, 1 ) model was designed by using a low frequency and highfrequency information sequence based on the ISSVM. Finally, a result of the prediction on all models was analyzed to determine the final prediction re suits. Production data of a multieffect evaporation process in alumina production were tested in the experiment ; and the results show the prediction algorithm is feasible and superior to a single GM (1, 1 ). The test demonstrated the LSSVM method had a good generalization performance and powerful robustness; and could be used for operation of an optimal e vaporation process in the alumina production.
关 键 词:小波变换 GM(1 1)模型 LSSVM模型 多效蒸发过程 参数预测
分 类 号:TQ133.1[化学工程—无机化工] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.65