检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机科学》2012年第11期216-220,225,共6页Computer Science
基 金:国家自然科学基金(50534050);江苏省高校自然科学研究计划项目(06KJD460174)资助
摘 要:为了有效地对矿井煤与瓦斯突出进行预测,提出了一种基于完全混沌粒子群优化(CCPSO)与支持向量机(SVM)的矿井煤与瓦斯突出预测方法。该方法将矿井工作面前方煤体瓦斯涌出量动态变化时间序列的多重分维谱作为特征指标,应用支持向量(SVM)构建预测模型,模型的参数向量由改进的完全混沌粒子群优化算法和测试集样本集分类错误率最小准则选择和优化。实验结果证明,该方法是有效的,它为煤与瓦斯突出预测提供了一种新途径。In order to forecast effectively coal-and-gas outburst in coal-mine, a new method for coal and-gas outburst forecast based on CCPSO (complete chaotic particle swarm optimization) and SVM (support vector machine) was pre- sented. With multi-fractal dimension spectrum of gas emission amount dynamic time series in the front of work-face in coal-mine being feature index, the forecasting model was constructed by using SV1Vk The parameters vector of the pro- posed model was selected and optimized by CCPSO and the criteria of CERM (classification error rate minimization) and TSSM (test sample set minimization). The experimental results show that the proposed method is effective and provides a new approach for forecasting coal-and-gas outburst in coal-mine.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62