检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王茜蒨[1] 黄志文[1] 刘凯[1] 李文江[1] 阎吉祥[1]
出 处:《光谱学与光谱分析》2012年第12期3179-3182,共4页Spectroscopy and Spectral Analysis
基 金:国家自然科学基金项目(60978035)资助
摘 要:研究了人工神经网络在激光诱导击穿光谱(LIBS)塑料分类识别方面的应用。选用七种常见的塑料作为实验样品,获得每种样品的170组LIBS光谱数据,利用主成分分析获得前五个主成分的得分矩阵。用每种塑料样品的130组光谱数据的主成分得分矩阵作为训练集,建立反向传播(BP)人工神经网络模型。将其余40组主成分得分作为测试数据输入训练好的模型进行分类识别,其识别准确度达到97.5%。实验结果表明,通过采用主成分分析与BP人工神经网络相结合的方法,可以很好地进行塑料激光诱导击穿光谱的分类识别,对塑料的回收利用有重要价值。The classification of seven kinds of plastic(ABS, PET, PP, PS, PVC, HDPE and PMMA) with the laser-induced breakdown spectroscopy based on artificial neural network model was investigated in the present paper. One hundred seventy LIBS spectra for each type of plastic were collected. Firstly, all 1 190 plastics LIBS spectra were studied with principal compo- nent analysis. The first five principal components (PC) totally explain 78. 4% of the original spectrum information. Therefore, the scores of five PCs of 130 LIBS spectra for each kind of plastic were chosen as the training set to build a back-propagation arti- ficial network model. And the other 40 LIBS spectra of each sample were used as the testing set for the trained model. The clas- sification accuracy was 97.5%. Experimental results demonstrate that plastics can be classified by using principal component analysis and artificial neural network (BP) method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15