检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:DING LongYun
机构地区:[1]School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China
出 处:《Science China Mathematics》2012年第12期2621-2630,共10页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China (Grant No.11071129);the Program for New Century Excellent Talents in University (Grant No.09-0477)
摘 要:Let Xn, n ∈ N be a sequence of non-empty sets, ψn : Xn2 → IR+. We consider the relation E = E((Xn, ψn)n∈N) on ∏n∈N Xn by (x, y) ∈ E((Xn, ψn)n∈N) <=>Σn∈Nψn(x(n), y(n)) < +∞. If E is an equiv- alence relation and all ψn, n ∈ N, are Borel, we show a trichotomy that either IRN/e1≤B E, E1≤B E, or E≤B E0. We also prove that, for a rather general case, E((Xn, ψn)n∈N) is an equivalence relation iff it is an ep-like equivalence relation.Let Xn, n ∈ N be a sequence of non-empty sets, ψn : Xn2 → IR+. We consider the relation E = E((Xn, ψn)n∈N) on ∏n∈N Xn by (x, y) ∈ E((Xn, ψn)n∈N) 〈=〉Σn∈Nψn(x(n), y(n)) 〈 +∞. If E is an equiv- alence relation and all ψn, n ∈ N, are Borel, we show a trichotomy that either IRN/e1≤B E, E1≤B E, or E≤B E0. We also prove that, for a rather general case, E((Xn, ψn)n∈N) is an equivalence relation iff it is an ep-like equivalence relation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222