A trichotomy for a class of equivalence relations  

A trichotomy for a class of equivalence relations

在线阅读下载全文

作  者:DING LongYun 

机构地区:[1]School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China

出  处:《Science China Mathematics》2012年第12期2621-2630,共10页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China (Grant No.11071129);the Program for New Century Excellent Talents in University (Grant No.09-0477)

摘  要:Let Xn, n ∈ N be a sequence of non-empty sets, ψn : Xn2 → IR+. We consider the relation E = E((Xn, ψn)n∈N) on ∏n∈N Xn by (x, y) ∈ E((Xn, ψn)n∈N) <=>Σn∈Nψn(x(n), y(n)) < +∞. If E is an equiv- alence relation and all ψn, n ∈ N, are Borel, we show a trichotomy that either IRN/e1≤B E, E1≤B E, or E≤B E0. We also prove that, for a rather general case, E((Xn, ψn)n∈N) is an equivalence relation iff it is an ep-like equivalence relation.Let Xn, n ∈ N be a sequence of non-empty sets, ψn : Xn2 → IR+. We consider the relation E = E((Xn, ψn)n∈N) on ∏n∈N Xn by (x, y) ∈ E((Xn, ψn)n∈N) 〈=〉Σn∈Nψn(x(n), y(n)) 〈 +∞. If E is an equiv- alence relation and all ψn, n ∈ N, are Borel, we show a trichotomy that either IRN/e1≤B E, E1≤B E, or E≤B E0. We also prove that, for a rather general case, E((Xn, ψn)n∈N) is an equivalence relation iff it is an ep-like equivalence relation.

关 键 词:Borel reducibility equivalence relation METRIZATION 

分 类 号:O153.3[理学—数学] TP24[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象