机构地区:[1]LMAM and School of Mathematical Sciences,Peking University,Beijing 100871,China [2]LSEC,ICMSEC,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China
出 处:《Journal of Computational Mathematics》2012年第5期449-460,共12页计算数学(英文)
摘 要:In the paper, we analyze the L2 norm error estimate of lower order finite element methods for the fourth order problem. We prove that the best error estimate in the L2 norm of the finite element solution is of second order, which can not be improved generally. The main ingredients are the saturation condition established for these elements and an identity for the error in the energy norm of the finite element solution. The result holds for most of the popular lower order finite element methods in the literature including: the Powell-Sabin C1 -P2 macro element, the nonconforming Morley element, the C1 -Q2 macro element, the nonconforming rectangle Morley element, and the nonconforming incomplete biquadratic element. In addition, the result actually applies to the nonconforming Adini element, the nonconforming Fraeijs de Veubeke elements, and the nonconforming Wang- Xu element and the Wang-Shi-Xu element provided that the saturation condition holds for them. This result solves one long standing problem in the literature: can the L2 norm error estimate of lower order finite element methods of the fourth order problem be two order higher than the error estimate in the energy norm?In the paper, we analyze the L2 norm error estimate of lower order finite element methods for the fourth order problem. We prove that the best error estimate in the L2 norm of the finite element solution is of second order, which can not be improved generally. The main ingredients are the saturation condition established for these elements and an identity for the error in the energy norm of the finite element solution. The result holds for most of the popular lower order finite element methods in the literature including: the Powell-Sabin C1 -P2 macro element, the nonconforming Morley element, the C1 -Q2 macro element, the nonconforming rectangle Morley element, and the nonconforming incomplete biquadratic element. In addition, the result actually applies to the nonconforming Adini element, the nonconforming Fraeijs de Veubeke elements, and the nonconforming Wang- Xu element and the Wang-Shi-Xu element provided that the saturation condition holds for them. This result solves one long standing problem in the literature: can the L2 norm error estimate of lower order finite element methods of the fourth order problem be two order higher than the error estimate in the energy norm?
关 键 词:L2 norm error estimate Energy norm error estimate Conforming Noncon-forming The Kirchhoff plate.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...