检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]盐城工学院,江苏盐城224001
出 处:《中国铸造装备与技术》2012年第6期52-54,共3页China Foundry Machinery & Technology
摘 要:注塑成型的过程中,影响其质量的因素很多,模具型腔的温度就是其一重要因素。它不仅影响到注塑件的质量,而且影响到模具加工的生产效率。运用BP神经网络来预测注塑模型腔温度不仅过程简便,还具有很高的精度,绝对误差小于2℃。In the plastic injection forming process, there are many factors altecting its quality. The mold cavity temperature is one of the important factors. It greatly influences both the quality of plastic product and the efficiency of injection molding. Using the empirical formula to calculating cavity temperature, the task is complicated and error is big. While the use of BP neural network to prediction of injection mold cavity temperature can simplify this process. The results showed that the temperature prediction of injection mold cavity with BP neural network was reliable with absolute error less than 2℃.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145