检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]咸宁学院数学与统计学院,湖北咸宁437000
出 处:《统计与决策》2012年第23期69-71,共3页Statistics & Decision
基 金:咸宁学院硕士科研基金(SK0817)
摘 要:对样本分类的方法很多,比如广义朴素贝叶斯分类器[1],层次-聚类模型[2],神经网络[3]等,但对小样本的分类却存在很多困难,如:小样本的代表性不够,不能覆盖所有属性,分类器分类效果不佳等问题,文章提出的结合拉普拉斯校准的特征加权朴素贝叶斯分类器操作简单,能高效地解决了以上问题。
分 类 号:O213[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3