具有异构分簇的粒子群优化算法研究  被引量:13

Research on PSO with Clusters and Heterogeneity

在线阅读下载全文

作  者:李文锋[1] 梁晓磊[1] 张煜[1] 

机构地区:[1]武汉理工大学物流工程学院,湖北武汉430063

出  处:《电子学报》2012年第11期2194-2199,共6页Acta Electronica Sinica

基  金:湖北省自然科学基金重点项目(No.2010CDA022);国家自然科学基金(No.51175394)

摘  要:粒子群优化(Particle Swarm Optimization,PSO)算法在复杂多峰函数可行域空间搜索时极易陷入局部极值点.研究表明改变种群拓扑结构和调整算法参数有助于改善种群的多样性,但是目前研究中少有同时考虑种群全局拓扑结构和局部粒子个体能力.本文提出一种具有异构分簇特性的自适应PSO算法.该算法采用K-均值聚类算法对种群进行动态分簇,形成多异构子群,并采用Ring型拓扑结构进行子群间信息流通.而后采用基于寻解水平评价的粒子自适应参数调整策略进行个体调整.通过实验分析表明该算法能够提高粒子群优化的种群的多样性、粒子活性、搜索能力和收敛性能,同时也降低了算法对参数初值的依赖性.Particle Swarm Optimization(PSO) algorithm easily falls into local optimal solution when solving complex multimodal function optimization problem.Researches show that dynamic topology and variable parameters can improve the diversity of swarm to improve the situation.However,the effect of topology and parameters is rarely considered simultaneously.In this paper,a new PSO algorithm based on clustering is proposed.It takes K-means clustering method to divide the swarm into different neighborhoods dynamically.These neighborhoods have different number of particles and are heterogeneous clusters.A Ring-structure is applied to exchange information among clusters.Furthermore,a novel discriminating method is proposed to detect the exploring stage of a cluster.Each particle adjusts its parameters automatically according to the exploring stage of its cluster.The results of experiments show that the operations above can improve diversity and energetic of the particles,increase exploring ability and convergence,and reduce the dependence of initial election of parameters.

关 键 词:粒子群算法 自适应 异构 聚类 函数优化 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象