检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]桂林电子科技大学商学院,广西桂林541004 [2]桂林航天工业学院经济与贸易系,广西桂林541004
出 处:《系统科学学报》2012年第4期88-91,共4页Chinese Journal of Systems Science
基 金:2009年广西科学研究与技术开发计划项目(桂科能0992023-8)
摘 要:港口吞吐量预测是港口决策和规划的基础。为了合理预测港口吞吐量,本文利用外贸进出口总量、第一产业总产值和第三产业总产值作为BP神经网络的输入变量,港口吞吐量为输出变量,建立了港口吞吐量预测的BP神经网络预测模型。然后根据2000年-2010年广西北部湾港口吞吐量、外贸进出口总量、第一产业总产值和第三产业总产值,利用Matlab 6.5软件的神经网络工具箱,通过对BP神经网络模型的反复训练,发现当隐含层节点数为6,学习率为0.05,训练次数为500次,训练精度为0.001,动力因子为0.9时得到的效果最好。并对BP神经网络模型与多元回归模型的预测结果进行比较分析,认为BP神经网络模型预测的总体效果更优。最后利用所确定的BP神经网络模型,对2011年和2012年两年的港口吞吐量进行了预测。Port throughput forecasting is the premise of port decision-making and planning.In order to forecast the port throughput reasonably,this paper takes foreign trade volume,the first industrial output and the third industry output as input variables and port throughput as output variables of the BP neural network to build the its forecast model of the port throughput.Then,according to the 2000-2010’s date of the North Gulf in Guangxi,the author uses Matlab 6.5 software neural network toolbox to train the BP neural network model repeat,and finds that the forecast effect is best when hidden node number is 6,adopted is 0.05,train time is 500,train accuracy is 0.001 and momentum factors is 0.9.By comparing the results with that from multivariate linear regression prediction model,the paper concludes that the BP neural network model is more superior.Finally,the author uses the determined BP neural network model to forecast the 2011 and 2012 two years of port throughput in the future.
关 键 词:港口物流 港口吞吐量 BP神经网络 多元线性回归 预测
分 类 号:N949[自然科学总论—系统科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249