检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]陕西交通职业技术学院公路工程系,西安710018 [2]江苏省特种设备安全监督检验研究院,南京210003
出 处:《工业建筑》2012年第12期129-132,共4页Industrial Construction
摘 要:以数据融合技术进行桁架结构的单损伤和多损伤识别。通过研究基于频率的结构损伤理论,分析归一化的频率和损伤位置的关系;利用小波概率神经网络的算法对决策融合进行修正,建立基于小波概率神经网络的数据融合结构损伤识别模型。运用结构计算软件计算了一典型桁架结构的频率,并融合为小波概率神经网络算法的输入特征向量,并对桁架算例模型结构进行损伤识别。通过桁架不同位置的损伤情况,验证该方法的有效性,并提出工程应用中应注意的问题。研究结果表明,基于小波概率神经网络算法的数据融合技术是一种比较可靠的损伤识别方法,具有良好的工程应用前景。Data fusion techniques were used to do single-damage and multi-damage identification of truss structures. By studying the structural damage theory based on frequency, it was analysed the relation between the normalized frequency and location of damage; and the wavelet probabilistic neural network algorithm was used to modify decision fusion, thus establishing a data fusion model of structural damage identification based on wavelet probabilistic neural network. The structural calculation software was used to calculate the frequency of a typical truss structure, which was integrated into an input feature vector of the wavelet probabilistic neural network algorithm, and a damage identification was done for the truss structure model example. Through truss damage of different locations to verify the effectiveness of the method was verified , and the problems needing attention during engineering uses was proposed. The results showed that data fusion technology based on wavelet probabilistic neural network algorithm was a more reliable damage identification method, and had good prospects for engineering applications.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229