检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]金陵科技学院信息技术学院,南京211169 [2]江苏省信息分析工程实验室,南京211169
出 处:《计算机科学》2012年第12期76-78,86,共4页Computer Science
基 金:江苏省教育厅高校自然科学研究项目(11KJD510002)资助
摘 要:为了解决SVM入侵检测方法检测率低、误报率高和检测速度慢等问题,提出了一种基于距离加权模板约简和属性信息熵的增量SVM入侵检测算法。该算法对K近邻样本与待测样本赋予总距离加权权重,对训练样本集进行约简,并以邻界区分割和基于样本属性信息熵对聚类样本中的噪声点和过拟合点进行剔除,以样本分散度来提取可能支持向量机,并基于KKT条件进行增量学习,从而构造最优SVM分类器。实验仿真证明,该算法具有较好的检测率和检测效率,并且误报率低。In order to solve the problem of the SVM intrusion detection method which has low detection rate,high distorting rate and slow detection speed,a kind of incremental SVM intrusion detection algorithm based on distance weighted template reduction and the attribute information entropy was proposed.In this algorithm,the training sample set reduction is made according to the sample for the samples and the neighbors to the total distance weighted weight,then,the clustering sample point and the noise of the fitting point are taken out through the adjacent to the border area segmentation and based on sample attribute information entropy,and then,using the sample dispersion extracts possible support vector machine,and incremental learning based on KKT conditions is made to construct the optimal SVM classifier.The simulation results show that the algorithm has good detection rate and the detection efficiency,and distorting rate low.
分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42