检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武汉大学测绘学院,武汉市珞喻路129号430079
出 处:《测绘地理信息》2012年第6期17-19,共3页Journal of Geomatics
基 金:国家"863计划"资助项目(2009AA12Z311);精密工程与工业测量国家测绘地理信息局重点实验室基金资助项目(PF2011-11);中央高校基本科研业务费专项基金资助项目(201121402020004)
摘 要:低空遥感影像相对于传统航空和卫星影像覆盖面积小且像幅数多,影像拼接是内业处理的重要工作之一。低空摄影机畸变大及飞行平台不稳定等因素易产生同名点匹配定位粗差,可能致使拼接低空影像接边误差较大。为减少这些粗差,利用具有尺度、旋转和平移不变性的SIFT算法进行低空影像匹配,然后采用Huber算法约束粗差,并通过Levenberg-Marquardt非线性最小二乘法进行平差,以获得精确的影像拼接单应矩阵。实验验证了该方法可减少拼接缝,提高了拼接精度。Image stitching is one of the important tasks when processing low-altitude aerial images covering smaller land areas haveing a larger number of images,relative to traditional aerial and satellite data.The gross error for corresponding points caused by camera distortion and instability of the flight platform,may result in a large stitching error on images edges.To eliminate the gross error,the SIFT algorithm with scale,rotation,and translation,was used for images matching.and The gross error was restricted by the Huber algorithm,and the Levenberg-Marquardt nonlinear least square method was used for data adjustmentNext accurate homography matrices where calculated for image stitching.Testing showed that the algorithm can reduce seams and improve image stitching accuracy.
关 键 词:低空数字影像 粗差 Huber算法 非线性最小二乘法 影像拼接
分 类 号:P237.3[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28