RWG基伽略金矩量法阻抗计算中两个关键问题的评述  被引量:1

Comment on Two Key Problems about Self/Mutual Impedance Caculation Based on RWG Galerkin Moment Method

在线阅读下载全文

作  者:余飞群 叶尚福 

机构地区:[1]盲信号处理重点实验室,成都610041

出  处:《微波学报》2012年第6期22-26,共5页Journal of Microwaves

摘  要:为了快速获得RWG基伽略金矩量法自/互阻抗精确值,一般采用数值方法与解析技术相结合的求积策略。求积策略中的数值积分方法采用三角形高斯求积,而解析技术则普遍采用奇异值提取技术。针对这两个关键问题在应用过程中容易忽视的几个细节进行了评述,包括三角形高斯求积规则选取、求积公式应用条件以及奇异性积分被积函数改造等。采用新近提出的奇异性积分精确快速算法对自/互阻抗计算涉及的两类积分进行了推导计算,同时给出了场、源三角形完全重合和具有公共边两种情形下,采用常规奇异值提取技术和精确快速算法对这两类积分的计算结果。The strategy which combines numerical and analytical integration technologies is always adopted to obtain self and mutual impedances accurately and efficiently when implementing the Galerkin' s moment methods with RWG basis functions. When integration numerically, the triangluar Guassian quarature formula is used, and when integration analytical- ly, the singularity extraction technology is adopted. This paper comments on some details on both technologies, including the rules and implementation precondition of tirangular Guassian quadrature formulae, and the transformation of integral functions of singular integrations. The newly proposed accurate and efficient calculation of sigular integration method is used to integrate the two kind of integrals involved during caculating self and mutual impedances. Results of the two kind of integrals are given when source and field triangles overlap or have one common edge, using traditional singular extraction technology and the accurte and efficient method respectively. It shows the computation precision of traditional singularity extraction technology is poor.

关 键 词:RWG基函数  互阻抗 三角形高斯求积 奇异性积分 伽略金法 

分 类 号:O241.4[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象