Global Weakly Discontinuous Solutions for Inhomogeneous Quasilinear Hyperbolic Systems with Characteristics with Constant Multiplicity  

Global Weakly Discontinuous Solutions for Inhomogeneous Quasilinear Hyperbolic Systems with Characteristics with Constant Multiplicity

在线阅读下载全文

作  者:Fei GUO 

机构地区:[1]School of Mathematical Sciences and Jiangsu Key Laboratory for NSLSCS,Nanjing Normal University,Jiangsu 210023,P.R.China

出  处:《Journal of Mathematical Research with Applications》2012年第6期699-714,共16页数学研究及应用(英文版)

基  金:Supported by the National Natural Science Foundation of China (Grant Nos. 11071141; 11271192);China Postdoctoral Science Foundation (Grant No. 20100481161);the Postdoctoral Foundation of Jiangsu Province (GrantNo. 1001042C);Qing Lan Project of Jiangsu Province;the Natural Science Foundation of the Jiangsu Higher Education Committee of China (Grant No. 11KJA110001);the Natural Science Foundation of Jiangsu Provience (Grant No. BK2011777)

摘  要:This paper considers the Cauchy problem with a kind of non-smooth initial data for general inhomogeneous quasilinear hyperbolic systems with characteristics with constant multiplicity. Under the matching condition, based on the refined fomulas on the decomposition of waves, we obtain a necessary and sufficient condition to guarantee the existence and uniqueness of global weakly discontinuous solution to the Cauchy problem.This paper considers the Cauchy problem with a kind of non-smooth initial data for general inhomogeneous quasilinear hyperbolic systems with characteristics with constant multiplicity. Under the matching condition, based on the refined fomulas on the decomposition of waves, we obtain a necessary and sufficient condition to guarantee the existence and uniqueness of global weakly discontinuous solution to the Cauchy problem.

关 键 词:inhomogeneous quasilinear hyperbolic system characteristic with constant multiplicity Cauchy problem global weakly discontinuous solution weak linear degeneracy matching condition. 

分 类 号:O175.27[理学—数学] O175.1[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象