检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周联[1]
出 处:《上海海事大学学报》2012年第4期86-90,共5页Journal of Shanghai Maritime University
基 金:国家自然科学基金(11226327);上海海事大学校基金(20120099)
摘 要:基于C-Bézier曲线的约束降阶逼近问题至今仍未得到很好解决,运用分而治之的方法,根据端点约束条件先确定降阶曲线的约束控制顶点;再利用最小二乘法,给出未约束控制顶点.特别地,利用C-Bézier基函数的显式表达式,给出降阶曲线的显式表示.与已有算法比较,本算法具有精度最佳、一次降多阶、显式表示、端点高阶插值等优点.数值实验验证该算法的优质高效.As the problem of degree reduction with constraints of C-Bezier curve has not been solved well till now, by the method of "divide and conquer", the constrained control points of degree-reduced curve are firstly determined according to the condition of endpoint constraints. Then the unconstrained control points are determined by least square method. In particular, the explicit expression of degree-reduced curve is presented by the explicit expression of C-B^zier basis function. Compared with the existing algo- rithms, this algorithm has some advantages such as optimal precision, doing multi-degree reduction at one time, using explicit expression, maintaining high continuity at two endpoints and so on. Numerical examples show the effectiveness of the algorithm.
关 键 词:C-BÉZIER曲线 显式表示 约束 降阶
分 类 号:TP391.411[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.28.166