检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江苏联合职业技术学院徐州机电工程分院,江苏徐州221011
出 处:《自动化技术与应用》2012年第12期24-27,48,共5页Techniques of Automation and Applications
摘 要:针对微粒群优化用于PID参数整定时易陷入局部收敛、效率不高的缺点,提出一种基于动态邻域和自适应惯性权重的微粒群优化算法。首先,通过定义动态邻域及其最优维值,提出种群个体的动态邻域最优维值学习策略,使微粒跟踪个体极值和邻域的最优维值进行搜索,避免局部收敛;其次,提出一种基于个体适应度的惯性权重动态调整方法,提高算法的寻优效率。优化典型测试函数验证了本文所提方法的有效性。最后,将该方法应用于典型工业过程控制的PID参数整定,获得了满意的控制效果。Aimed at the disadvantage that the particle swarm optimization is easy to fall into the local convergence, and has low efficiency, a particle swarm optimization based on dynamic neighborhood topology and self-adaptive inertia weight is proposed in this paper. Firstly, by defining the dynamic neighborhood and its optimal dimension value, a learning strategy on optimal dimension values of dynamic neighborhood is proposed to lead the particles track the optimal dimension values of personal best positions and neighborhoods, for avoiding the local convergence. Secondly, a self- adaptive method based on individuals' fitness is proposed to adjust the inertia weight in order to improve the searching efficiency of the proposed algorithm. The result on typical test verifies the effectiveness of the proposed method. Finally, the method is applied to PID parameters tuning for typical industrial process control and a satisfactory control effect is obtained.
关 键 词:微粒群优化 PID参数整定 邻域最优维值 自适应惯性权重 函数优化
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.54.178