Shrinking target problems for beta-dynamical system  被引量:3

Shrinking target problems for beta-dynamical system

在线阅读下载全文

作  者:SHEN LuMing WANG BaoWei 

机构地区:[1]College of Science,Hunan Agricultural University [2]School of Mathematics and Statistics,Huazhong University of Science and Technology [3]Lamfa-cnrs umr 6140,Université de Picardie Jules Verne,33 rue Saint Leu,80039 Amiens,France

出  处:《Science China Mathematics》2013年第1期91-104,共14页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China(Grant Nos.10901066 and 51149008);Hunan Natural Science Foundation(Grant No.09JJ3001)

摘  要:For any β 〉 1, let ([0, 1],Tβ) be the beta dynamical system. For a positive function ψ : N → R+ and a real number x0 E [0, 1], we define D(Tβ, ψ, xo) the set of ψ-well approximable points by xo as {x C [0, 1] : ]Tβ^nx - x0| (ψ(n) for infinitely many n ∈ N}.In this note, by proving a structure lemma that any ball B(x, r) contains a regular cylinder of comparable length with r, we determine the Hausdorff dimension of the set D(Tβ, ψb, x0) completely for any β 〉 1 and any positive function ψ.For any β>1,let([0,1],Tβ) be the beta dynamical system.For a positive function ψ:N→R+ and a real number x0 ∈[0,1],we define D(Tβ,ψ,x0) the set of ψ-well approximable points by x0as {x∈[0,1]:|Tβnx-x0|<ψ(n) for infinitely many n∈N}.In this note,by proving a structure lemma that any ball B(x,r) contains a regular cylinder of comparable length with r,we determine the Hausdorff dimension of the set D(Tβ,ψ,x0) completely for any β>1 and any positive function ψ.

关 键 词:β -dynamical system shrinking target problems Hausdorff dimension 

分 类 号:O19[理学—数学] O174[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象