基于声信号多重分形和支持向量机的目标识别研究  被引量:6

Target Identification of Acoustic Signals Based on Multifractal Analysis and Support Vector Machine

在线阅读下载全文

作  者:丁凯[1] 方向[1] 张卫平[1] 范磊[1] 李兴华[1] 谢立军[1] 

机构地区:[1]解放军理工大学工程兵工程学院,江苏南京210007

出  处:《兵工学报》2012年第12期1521-1526,共6页Acta Armamentarii

基  金:总装备部预先研究项目(ZLY2008424);中国博士后科学基金项目(20100471823);江苏省博士后基金项目(1102147c)

摘  要:为提高智能地雷对地面装甲目标的识别率,针对地面装甲目标辐射的噪声信号具有非线性的特性,建立了一种基于多重分形和支持向量机(SVM)相结合的分类识别模型。通过野外场地实验,采集到两种装甲目标在不同工况(运行速度)下的各40组样本信号;利用多重分形分析计算得到两种目标信号的广义分形维数谱(GFDS),分析了两种目标信号在不同工况下多重分形谱的特征;将GFDS值作为目标特征向量输入SVM分类模型,经训练得到最优分类结果,并与小波包能量(WPE)法提取样本特征后输入SVM的识别效果进行了对比,结果表明前者的识别率达到92.5%,高于后者的85%的识别率。In order to improve the recognition rate of smart landmines for armored target,as the acoustic signals radiated from armored vehicles have been proved to be nonlinear,an identification model based on multifractal analysis and support vector machine(SVM) was established.40 sample signals for each armored target(a certain type of wheeled armored vehicle and a tank) running in different speeds(2 working conditions) were collected by outdoor experiment.The generalized fractal dimension spectrums(GFDS) for both target signals were calculated based on multifractal analysis,and the characters of GFDS under 2 working conditions were analyzed.The GFDS values were input into SVM classification model,and the optimal identification results were obtained by training the model.After an identification effect comparison between GFDS and wavelet packet energy(WPE) method,the results show that the model based on GFDS and SVM has a recognition rate of 92.5%,which is higher than the 85% by WPE method.

关 键 词:信息处理技术 装甲目标 声信号 多重分形 支持向量机 目标识别 

分 类 号:TJ4[兵器科学与技术—火炮、自动武器与弹药工程] TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象