检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:任芳
机构地区:[1]福建船政交通职业技术学院基础部,福建福州350007
出 处:《吉首大学学报(自然科学版)》2012年第6期22-25,46,共5页Journal of Jishou University(Natural Sciences Edition)
摘 要:首先证明交换环关于Ⅰ-adic拓扑诱导的完备化环是商环的有限投射极限,其次揭示Abel范畴noetherian对象与正合序列的关系,进而用范畴的方法给出希尔伯特basis定理的推论——noetherian环的Ⅰ-adic拓扑完备化环Rnoetherian环的新证明,之后论证该推论与希尔伯特basis定理的另一推论是等价的.This paper first shows that the completion of a commutative ring induced by I-adic topology is the finite projective limit of its quotient rings. And then the relationship between noetherian objects and exact sequences is given; moreover,a new proof for the lemma of Hilbert basis theorem is presented, which states that:the completion of a noetherian ring induced by I-adic topology is again a noetherian ring. Also, the equivalence of the above lemma and the other lemma of Hilbert basis theorem is investiga- ted.
关 键 词:Ⅰ-adic拓扑 完备化 形式幂级数环 noetherian环
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33