检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Asadollah Motallebi Mohammad Fathalilou Ghader Rezazadeh
机构地区:[1]Mech. Eng. Dept., Islamic Azad University [2]Mech. Eng. Dept., Urmia University
出 处:《Acta Mechanica Solida Sinica》2012年第6期627-637,共11页固体力学学报(英文版)
摘 要:In this paper, the effects of the open crack on the static and dynamic pull-in volt- ages of an electrostatically actuated fixed-fixed and cantilever micro-beam are investigated. By presenting a mathematical modeling, the governing static and dynamic equations are solved by SSLM and Galerkin-based Reduced Order Model, respectively. Then, each single-side open crack in the micro-beam is modeled by a massless rotational spring and the cracked mode shapes and corresponding natural frequencies are calculated by considering the boundary and patching con- ditions and using transfer matrix methods. Finally, the effects of the crack depth ratio, crack position and crack number on the pull-in voltage of the micro-beams are studied. It is shown that beside the residual stresses created in the machining process, the crack(s) can be initiated, growth and consequently change the pull-in voltage of the system by decreasing the natural frequencies. The results show that the crack position is effective beside the crack depth ratio in decreasing the pull-in voltage. Also it is shown that in the fixed-fixed micro-beam there are several points for the crack location in which, the pull-in voltage is extremum.In this paper, the effects of the open crack on the static and dynamic pull-in volt- ages of an electrostatically actuated fixed-fixed and cantilever micro-beam are investigated. By presenting a mathematical modeling, the governing static and dynamic equations are solved by SSLM and Galerkin-based Reduced Order Model, respectively. Then, each single-side open crack in the micro-beam is modeled by a massless rotational spring and the cracked mode shapes and corresponding natural frequencies are calculated by considering the boundary and patching con- ditions and using transfer matrix methods. Finally, the effects of the crack depth ratio, crack position and crack number on the pull-in voltage of the micro-beams are studied. It is shown that beside the residual stresses created in the machining process, the crack(s) can be initiated, growth and consequently change the pull-in voltage of the system by decreasing the natural frequencies. The results show that the crack position is effective beside the crack depth ratio in decreasing the pull-in voltage. Also it is shown that in the fixed-fixed micro-beam there are several points for the crack location in which, the pull-in voltage is extremum.
关 键 词:MEMS open crack ELECTROSTATIC pull-in instability
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222