检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《北京大学学报(自然科学版)》2013年第1期102-108,共7页Acta Scientiarum Naturalium Universitatis Pekinensis
基 金:国家自然科学基金(61100042)资助
摘 要:针对有监督、半监督的文本情感分析存在标注样本不容易获取的问题,通过在LDA模型中融入情感模型,提出一种无监督的主题情感混合模型(UTSU模型)。UTSU模型对每个句子采样情感标签,对每个词采样主题标签,无须对样本进行标注,就可以得到各个主题的主题情感词,从而对文档集进行情感分类。情感分类实验对比表明,UTSU模型的分类性能比有监督情感分类方法稍差,但在无监督的情感分类方法中效果最好,情感分类综合指标比ASUM模型提高了约2%,比JST模型提高了约16%。Supervised and semi-supervised sentiment classification methods need label corpora for classifier training. To solve this problem, an unsupervised topic and sentiment unification model (UTSU model) is proposed based on the LDA model. UTSU model imposes a constraint that all words in a sentence are generated from one sentiment and each word is generated from one topic. This constraint conforms to the sentiment expression of language and will not limit the topic relation of words. UTSU model is compeletly unsupervised and it needs neither labeled corpora nor sentiment seed words. The experiments of sentiment classification show that UTSU model comes close to supervised classification methods and outperforms other topic and sentiment unification models. UTSU model improves the F1 value of sentiment classification 2% than ASUM model and 16% than JST model.
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222