Integration of Lab model and EHOG for human appearance matching across disjoint camera views  被引量:2

结合Lab模型与EHOG特征的摄像机离散视域人物外表匹配(英文)

在线阅读下载全文

作  者:杨彪[1] 林国余[1] 张为公[1] 

机构地区:[1]东南大学仪器科学与工程学院,南京210096

出  处:《Journal of Southeast University(English Edition)》2012年第4期422-427,共6页东南大学学报(英文版)

基  金:The National Natural Science Foundation of China(No.60972001);the Science and Technology Plan of Suzhou City(No.SG201076)

摘  要:The integration of the Lab model with the extended histogram of oriented gradients (EHOG) is proposed to improve the accuracy of human appearance matching across disjoint camera views under perturbations such as illumination changes and different viewing angles. For the Lab model that describes the global information of observations, a sorted nearest neighbor clustering method is proposed for color clustering and then a partitioned color matching method is used to calculate the color similarity between observations. The Bhattacharya distance is employed for the textural similarity calculation of the EHOG which describes the local information. The global information, which is robust to different viewing angles and scale changes, describes the observations well. Meanwhile, the use of local information, which is robust to illumination changes, can strengthen the discriminative ability of the method. The integration of global and local information improves the accuracy and robustness of the proposed matching approach. Experiments are carried out indoors, and the results show a high matching accuracy of the proposed method.针对摄像头离散区域存在的光照变化、视角变化等干扰,提出一种结合Lab模型以及扩展梯度方向直方图特征的方法来改善人物外表匹配的准确率.对于描述目标全局信息的Lab模型,提出一种排序最近邻聚类算法进行颜色聚类,然后使用分块颜色匹配算法计算观察值之间的颜色相似度.对于描述目标局部信息的扩展梯度方向直方图特征,使用巴氏距离计算2个观察值之间的相似度.全局信息可以很好地描述目标外形,并且能够适应摄像头视角的变化以及目标尺度上的改变.局部信息对光照变化具有更强的鲁棒性,它能够增强模型的辨别能力.全局信息和局部信息的结合保证了所提出算法的精确度和鲁棒性.室内实验结果显示所提出的算法具有较高的正确匹配率.

关 键 词:human appearance matching Lab model extended histogram of oriented gradients (EHOG) disjoint camera views 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象