检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈海英[1]
出 处:《计算机仿真》2013年第1期297-300,共4页Computer Simulation
基 金:校级重点教研资助项目(201103);2012年湖北首高等学校省级教学研究项目(2012458)
摘 要:研究上证指数预测问题,针对证券指数变化具有随机性、时变、波动性较大等特点,传统线性预测方法预测精度低等缺陷,提出一种基于支持向量机的证券指数预测方法。支持向量机是一种基于统计学理论和结构风险最小化原则的机器学习方法,克服了类似神经网络经验见险最小化原则算法的过拟合、局部极值等缺陷,泛化能力优异。采用1990~2009年上证指数对算法性能进行测试,仿真结果表明,支持向量机是一种预测精度高、误差小的证券指数预测算法,预测结果可以为用户提供有价值的参考意见。Study Shanghai stock index forecasting problem. The stock index is stochastic, time-varying, and with bigger fluctuation, therefore, the forecasting accuracy of traditional linear method is very low. This paper put forward a stock index forecasting method based on support vector machine. The support vector machine based on statistical theory and structural risk minimization principle can overcome the shortcomings of neural network algorithm, such as over fitting and local optimal defects, and has excellent generalization ability. The performance of the proposed algo-rithm was tested with Shanghai Composite Index from 1990 to 2009. The simulation results show that the support vector machine has higher precision, smaller error in stock index prediction, and the forecasting results can provide valuable advice for users.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145