检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李重阳[1] 武佳[1] 苏艳红[1] 白珂珂[1] 李晖[1]
出 处:《化学研究与应用》2013年第1期82-85,共4页Chemical Research and Application
摘 要:采用近红外光谱技术结合遗传算法优化的小波神经网络,对大孔树脂纯化过程中橄榄果中的鞣花酸含量进行监控。通过小波变换对光谱进行去噪、压缩,作为人工神经网络的输入,同时以遗传算法优化神经网络的权值与阈值,并与常用的偏最小二乘(PLS)线性模型的建模效果进行比较。实验结果表明,两者都能够较准确的预测鞣花酸的含量,相对而言,人工神经网络(ANN)效果较好。The near-infrared spectroscopy combined with wavelet neural networks which is optimized by genetic algorithm was used to monitor the ellagic acid content in olive fruit in the macroporous resin purification process. After being denoised and compressed by wavelet transform,the spectrum was used as the input message of artificial neural network(ANN). At the same time,the weights and threshold was optimized by genetic algorithm, and the results were compared with that of partial least squares (PLS)linear mod- el. Results of this experimental showed that both of the two methods couldpredict the content of ellagic acid, but artificial neural net- work is more accurately than partial least squares linear model
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222