基于补偿模糊神经网络的BLDCM伺服控制  被引量:12

Brushless DC Motor Servo Control Based on Compensation Fuzzy Neural Network

在线阅读下载全文

作  者:顾德英[1] 吴成赛[1] 侯娇[1] 

机构地区:[1]东北大学信息科学与工程学院,辽宁沈阳110819

出  处:《东北大学学报(自然科学版)》2013年第1期13-16,共4页Journal of Northeastern University(Natural Science)

基  金:国家自然科学基金资助项目(61104005)

摘  要:为了实现无刷直流电机(BLDCM)位置伺服系统的高精度位置跟踪控制,针对系统多变量、非线性、强耦合、时变的特点,提出了一种基于补偿模糊神经网络控制器(CFNNC)的设计方法.该控制器将补偿模糊逻辑和神经网络相结合,引入了模糊神经元,使网络既能适当调整输入、输出模糊隶属函数,又能借助于补偿逻辑算法动态地优化模糊推理,大大提高了网络的容错性、稳定性和训练速度.仿真和在DSP控制系统上的实验结果表明,采用补偿模糊神经网络控制器,系统响应快、精度高、鲁棒性强,动态特性明显优于传统PID控制.In order to implement high precision position tracking controlling for the brushless DC motor( BLDCM ), a CFNNC (compensation fuzzy neural network controller ) algorithm was proposed based on the multivariable, nonlinearity, strong coupling, time-variable characteristics of position servo system. The compensative fuzzy logic and neural network were combined in the proposed algorithm, which could not only adjust the input and output of fuzzy membership functions, but also optimize the fuzzy inference dynamically by using the logic compensation algorithm. The fault tolerance, stability and working speed of the network were improved greatly due to the introduction of fuzzy neuron. The simulation and experiment results of DSP-based control system illustrated that this method has rapid response, high precision and robustness, and its dynamic characteristic was much better than that of traditional PID controller.

关 键 词:无刷直流电机 CFNNC 位置伺服系统 数学模型 DSP控制系统 

分 类 号:TP27[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象